

Leadership & Innovation in Healthcare

23 - 24 September 2016 | Grand Hyatt Singapore

FUNG FOUNDATION

Hidden Health Role of the Gut Microbiome

Lisa L. Powell, MS, RDN
Director of Nutrition
Canyon Ranch Health Resort
Tucson, Arizona USA

©2016 CR License, LLC. All rights reserved

The Gut Microbiome

- Bowel microbial environment
- Bacteria, archaea, fungi and viruses
- 1,800 genera
- 15,000 36,000 distinct species

The Gut Microbiome

- 37.2 trillion human cells
- 100 trillion gut bacteria
- 150 x larger genome
 - Human: 23,000 genes
 - Microbiome: 3.3 million genes
 - DNA: 1% human; 99% microbial

- Digestive functions
 - Fermentation of indigestible carbohydrates
 - Produce short-chain fatty acids
 - Energy substrate for colonocytes
 - Contributes approx. 30% daily energy
 - Produce Vitamin K and biotin

 Influence gene expression in microvilli development

©2016 CR License, LLC. All rights reserved

- Energy metabolism, obesity and DM2
 - Decreased microbial diversity in obesity
 - Alterations in gut microbiota in DM2
 - Decreased butyrate production
 - Increased caloric harvesting

- Maintain "gut-brain axis"
 - Regulate GI motility and secretions
 - Influence pain perception
 - Regulate appetite
 - Modulate mood and emotional response

- Support immune functions
 - Oppose pathogenic micro-organisms
 - Prevent adhesion
 - Provide competitive colonization
 - Produce bacteriocins

- Support immune function
 - Participate in GALT formation
 - Reduce inflammatory cytokines
 - Decrease allergic response
 - Improve gut barrier function

- Support immune function
 - Display anti-carcinogenic effects
 - Reinforce mucosal barrier
 - Bind toxic metabolites produced by pathogenic micro-organisms

Development of Microbiome

- - Colonization of the fetal gut
 - Placental transfer
 - Vaginal delivery
 - Breastfeeding
 - Digestive and immune benefits
 - Vaginally-delivered infants:
 - ↓ pediatric otitis, allergies, asthma and atopy

©2016 CR License, LLC. All rights reserved

Dysbiosis

 Imbalance between beneficial and potentially pathogenic microorganisms

©2016 CR License, LLC. All rights reserved

Causes of Dysbiosis

- Antibiotic therapy
 - Decreases stability and diversity of microflora
 - Only partial recovery at 4 years
- Stress
 - Increases intestinal permeability
 - Increases inflammation

©2016 CR License, LLC. All rights reserved

Causes of Dysbiosis

- Poor diet
 - Low fiber intake
 - Lack of fermented foods
- Hypochlorhydria
 - Acid-blocking rx
- Toxic exposure
 - PCBs

Conditions Associated with Dysbiosis

- Inflammation
- Compromised immune function
- Inflammatory/Irritable Bowel disease
- Nutritional deficiencies
- Allergies

Conditions Associated with Dysbiosis

- Neurocognitive changes
- Depression
- Obesity
- Type 2 Diabetes
- Increased oxidative stress
- Increased cancer risk

- •
- Decreased microbial diversity in developed world compared to traditional diets
- Decreased resilience and disease resistance
- Mice study:
 - Diet-induced changes in microbiota were reversible in one generation
 - Progressive decrease in diversity over multiple generations
 - Not reversible with dietary changes

- Phenotype subject to epigenetic influence.
- Food may be most powerful influence within our control.

- Probiotics
 - "Live micro-organisms which, when administered in adequate amounts, confer a health benefit on the host"
 - World Health Organization
 - Functional foods and supplements
 - Modulate microbiome

- Benefit of probiotics:
 - Interfere with the growth or survival of pathogenic micro-organisms
 - Improve mucosal barrier and immune function

- Consume fermented foods
 - Zymology: Food produced or preserved by micro-organisms
 - Naturally-occurring bacteria
 - Pellicle/SCOBY
 - Symbiotic Colony of Bacteria and Yeast

Traditional Asian fermented foods:

Tofu

- Soy/tamari/fish sauce
- Miso
- Tempeh
- Amazake
- Preserved duck eggs
- Fresh pickles

Traditional Asian fermented foods:

Kim chi

Fermented cabbage

- Atchara
- Bagoon
- Soybean paste
- Natto

- Kombucha
 - Fermented green/black tea
 - SCOBY fermentation
 - Lightly effervescent
 - Varying alcohol content
 - Unknown origin possibly Japanese

©2016 CR License, LLC. All rights reserved

- Other Fermented Foods
 - Yogurt
 - Kefir
 - Cheese
 - Buttermilk
 - Crème fraiche
 - Lassi
 - Ayran/doogh/tan

- Fresh sauerkraut
- Cacao beans
- Kvass
- Poi
- Sauces
 - Worchestershire
 - Tabasco

- Sourdough bread or cooked cheese
- Smoked/cooked fermented meats
- Filtration removes most active bacteria in alcoholic beverages
- Preservatives can destroy bacteria

- Minimize refined carbohydrates and sugars
 - Impair immune function
 - Promote inflammation
 - Feed pathogenic organisms

- Avoid processed fructose
 - Alters the gut microbiome
 - Overharvesting of sugars and fat
 - Increased gut permeability
 - Increased inflammation
 - Promotes NAFLD

- Non-digestible fiber
- Stimulate development/activity of beneficial bacteria.
- Enhance immune function
- Improve absorption of dietary minerals

- Prebiotic foods
 - FOS (Fructo-oligosaccharides)
 - Inulin/chicory root, asparagus, Jerusalem artichoke, leeks, onion, garlic, bananas
 - Often included in probiotic supplements

©2016 CR License, LLC. All rights reserved

- Arabinogalactans
 - Carrots, pears, tomatoes, turmeric, Shitake mushrooms
 - Astragalus and Echinacea

Other prebiotic sources:
 Almonds, burdock root, endive, leafy greens, jicama, kiwifruit, oats, salsify, whole wheat

- Probiotic Supplements
 - Broad-spectrum/Multiple species
 - Reputable manufacturers
 - Internal and third-party analysis
 - High Colony-Forming Units (billions)
 - Refrigerated/freeze-dried products

- Probiotics in supplements and food
 - Sensitive to environmental factors:
 - Heat
 - Moisture
 - Oxygen
 - pH
 - Food labels: "Live, active cultures"

Making a Difference

- Model healthy choices
- Educate patients
- Encourage traditional diet
- Utilize nutrition professionals

- Books
 - I Contain Multitudes, Ed Yong
 - The Swift Diet, Kathie M. Swift
 - The Inside Tract, G Mullin & Kathie Swift

Publications

Spaiser, S. J., et al, "Lactobacillus gasseri KS-13,
 Bifidobacterium bifidum G9-1, and Bifidobacterium longum MM 2 Ingestion Induces a less Inflammatory Cytokine Profile and a
 Potentially Beneficial Shift in Gut Microbiota in Older Adults: A
 Randomized, Double-Blind, Placebo-Controlled, Crossover
 Study", J Amer Coll Clin Nutri, 34, (6): 459-469

- Shen, S, Wong, CH, "Bugging Inflammation: Role of the Gut Microbiota, Clin Transl Immunology, 2016 Apr 15; 5 (4)
- Sonnenburg, S, et al, "Diet-Induced Extinction in the Gut Microbiota Compound Over Generations, Nature.com, 529, Jan 2016: 212-215

- •
- Staudacher, HM, Whelan K, "Altered Gastrointestinal Microbiota in Irritable Bowel Syndrome and its Modification by Diet: Probiotics, Prebiotics and the Low FODMAP Diet, Proc. Nutr Soc, 2016, Aug: 75 (3):306-18
- Walsh, CJ, et al, "Beneficial Modulation of the Gut Microbiota, FEBS Letters, 588, 2014: 4120-30